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The evolution of small-amplitude finite-rate waves in fluids having high specific 
heats is studied adopting the assumption that the unperturbed state varies in the 
propagation direction. It is shown that this not only leads to quantitative changes 
of the results holding for homogeneous media but also gives rise to new phenomena. 
Most interesting, shocks are found to terminate at  a finite distance from the origin 
if the fundamental derivative changes sign along the propagation path. 

1. Introduction 
Recent theoretical and experimental studies indicate that fluids with high specific 

heats may prove useful in a number of technological applications including problems 
on nonlinear acoustics, steady and unsteady internal flows, viscous-inviscid 
interactions, flows with phase changes, etc. Apart from being of importance as far as 
future applications are concerned, investigations dealing with such fluids are also of 
interest in their own right. In fact they have revealed a surprising richness of new 
phenomena even if the considerations are restricted to the case of single-phase fluids. 
Expansion shocks provide a prominent example of such new phenomena, which were 
previously thought impossible. 

In  the limit of small-amplitude disturbances the answer to the question of whether 
compression sh.ocks or expansion shocks may form in a fluid depends solely on the 
sign of the so-called fundamental derivative 

introduced by Hayes (1960). Here 

is the local sound speed and p", 9, s" are the local fluid density, pressure and entropy ; 
dimensional quantities will be denoted by 

If the fluid has r > 0 the propagation speed of wavelets increases with the excess 
pressure and the associated nonlinear steepening of the wave profile will therefore 
lead to the occurrence of compression shocks only. An example of a strictly positive 
r is the perfect gas and, consequently, the perfect gas admits only compression 
shocks. In  contrast, if T < 0 wavelets carrying lower values of the excess pressure 
travel faster than those carrying higher values and expansion shocks are thus found 
to be the only jump discontinuities capable of propagating through the fluid. The 

throughout. 



172 A .  Kluwick and E.  A .  Cox 

, ?. > 0: compression shocks 

f < 0: expansion shocks 
- 

IIl = O(s): compression and 
expansion shocks 

Saturation line 

FIGURE 1. Regions of r> 0 and r < 0 in the (p,l/p")-plane. 

first theoretical studies which point to the existence of this type of fluid have been 
carried out by Bethe (1942) and independently by Zel'dovich (1946) who showed that 
Van der Waals gases exhibit regions with r < 0 near the critical point provided the 
specific heats are sufficiently high, c,/R > 17. Here c,  and R denote the specific heat 
a t  constant volume and the gas constant, respectively. An important further step 
was taken by Thompson & Lambrakis (1973). Using the Van der Waals equation as 
well as more refined constitutive relations, they were able to  give the first specific 
examples of real fluids having r < 0, which include hydrocarbons and fluorocarbons 
of moderate complexity. Most recently, a detailed study of the thermodynamic 
properties of fluorocarbons has been carried out by Cramer (1991) who applied the 
Martin Hou equation to calculate r. Each of the seven commercially available 
fluorocarbons was found to  exhibit a region of r<  0 large enough to include the 
critical isotherm. 

According to the theoretical studies cited so far the fundamental derivative r can, 
in fact, change sign for a class of single phase fluids. Following a proposal of Cramer 
(1991) such fluids will be termed Bethe-Zel'dovich-Thompson (BZT) fluids in 
recognition of the pioneering contributions made by those scholars of real-fluid 
effects. Nevertheless, i t  should be noted that the existence of such fluids has still to  
be verified experimentally, for example, by generating a single-phase expansion 
shock. Experiments, which show the formation of expansion shocks in Freon-13 have 
been carried out by Borisov et al. (1983) Unfortunately, however, the flow appears 
to have also entered the two-phase region. 

Although the experimental detection of a single expansion shock would certainly 
represent a spectacular event from a physical point of view the mathematical theory 
which describes the properties of such shocks is much less spectacular. In fact, in the 
limit of weak shocks the effect of negative nonlinearity can be incorporated quite 
easily into the classical theory of nonlinear acoustics. The situation changes 
drastically, however, if the unperturbed state of the BZT fluid is sufficiently close to 
the r = 0 curve relative to the wave amplitude (see figure 1). Even small disturbances 
carried out by a sound wave may then lead to  a sign change of r and consequently 
different parts of the wave may correspond to different signs of r. As shown by 
Cramer &, Kluwick (1984) new phenomena having no counterpart in the classical 
theory can arise. Examples include the partial disintegration of both compression 
and expansion shocks, collisions between compression and expansion shocks and the 
formation of sonic shocks having a speed identically equal to  the convected sound 
speed immediately upstream or downstream of the front. 

It has been pointed out earlier that the type of shock capable of propagating in any 
particular fluid is determined by the sign of the fundamental derivative. I n  addition, 
Ill serves as a measure which characterizes the importance of nonlinear effects. 
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Specifically, the propagation distance over which the profile of a sound wave is 
distorted significantly is found to  be proportional to  1/14. Therefore if the 
unperturbed state of the fluid is close to the r = 0 line, as has been assumed in the 
investigation by Cramer & Kluwick (1984), nonlinear effects will need much larger 
propagation distances and times to  come into play than in classical theory. As 
a result, the evolution of a sound wave in a medium having mixed nonlinearity 
14 4 1 is expected to be very sensitive to deviations from the homogeneous state of 
the initially quiescent fluid on two grounds. First, even small gradients of the field 
quantities present in the unperturbed state may accumulate to give significant 
irregularities since the propagation distance required for the occurrence of nonlinear 
effects is so long. Second, if the unperturbed state is close to the r = 0 line even small 
changes of the thermodynamic state are associated with large relative changes of r. 

It seems to be important, therefore, to assess in what respect the evolution of a 
wave in a stratified medium may differ from the behaviour of a wave propagating 
into a homogeneous medium. This is the aim of the present study, which shows that 
stratification effects may not only cause quantitative but can even lead to  the 
occurrence of qualitatively new phenomena. 

2. Transport equation 
The transport equation which governs the propagation of small acoustic 

disturbances in a stratified medium can be derived in several ways. For example, Sen 
& Cramer (1987) have shown how propagation phenomena having mixed nonlinearity 
can be investigated using the method of multiple scales. Here we use a less formal 
approach which avoids the tedious calculation of the (already known) nonlinear 
terms and concentrate on the evaluation of the additional stratification effect. 
To this end, following earlier work by Bremmer (1951), the continuously 
stratified unperturbed medium is replaced by a set of homogeneous layers 
0 < x < xl, x1 < x < x2, .... The approach is then similar to that developed by 
Mortell & Seymour (1976) for small-amplitude nonlinear disturbances in elastic 
composites. It is convenient first to introduce the non-dimensional quantities 

where 6, p", li;, 6, s", 53, t", Ev and denote the velocity, the density, the pressure, the 
speed of sound, the entropy, the distance in the propagation direction, the time, 
specific heat at constant volume and the characteristic wavelength. Subscript 10 
refers to the unperturbed state in the first layer. 

In  each layer asymptotic expansions of the form 

1 u, = su,,+E2Un2+O(E2), 

P n  = Pno + v n 1 +  E2P,2 + o(e2),  
p = €PI+ 2 p 2  + O ( E 2 )  J 

are assumed to hold. Here pno = Pno/Plo and e( 6 1) is a measure of the small wave 
amplitude. Using the results obtained by Cramer & Kluwick (1984) the speed of the 
wave in each of the layers can be written as 

dx 
dt 
- (2.3) 
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where 
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- 1  r,, = -r,, = O( 1 )  
E 

and 

X O  - A,, = :Ano = O(1) 
a,, 

To determine the travel time of an acoustic signal emanating from layer 1 to layer 
n, say, we consider first the behaviour of the wave a t  a single contact discontinuity. 
Since we are interested in the local properties of the wave, e.g. the transmitted and 
reflected part of the incoming amplitude only, it is sufficient to solve the linearized 
version of the governing equations, which leads to  the well-known result : 

u,+1,1 i,,,,, = U,,l L , O >  i m , o  = ( P m 0 a m o ) t .  (2.7) 
Combination of (2.3) and (2.7) then immediately yields the transport equation which 
governs the evolution of disturbances in a continuously stratified medium : 

(2.8) 
dx 

u,i,(a) = constant on - 
dt 

Here it has been assumed that the unperturbed field quantities depend on the 
stretched coordinate 

rather than on x in order to ensure that nonlinear effects occurring in a homogenous 
medium and the effects due to  stratification are of equal importance and thus lead 
to a significant distortion of the wave profile over propagation distances of 0(1/c2). 

B = € 2 2  (2.9) 

Introducing the characteristic time variable 

(2.8) can be reduced to  the relationship 

(2.10) 

(2.11) 

Similar to  the case of classical gas dynamics (see Gubkin 1958; Hayes, Haefeli & 
Kulsrud 1969) the results developed here for a temperature stratification can easily 
be generalized to  include the effects of an additional pressure variation. The main 
difference will be the inclusion of a zeroth-order term for the pressure in (2.2). 
However, the transport equation for the disturbances will remain unchanged. These 
results are completely consistent with the WKB approximation. 

as well as Ao/uo and i, exhibit changes of O(1) 
in the propagation direction. Inspection of figure 1,  however, indicates that such a 
situation will be the exception rather than the rule since the thickness of the 
transition region, where the basic assumption r = O(E)  holds, is small (O(E) ) .  I n  
general than the variation of the field quantities inside the stratified medium will be 
associated with the small changes of the thermodynamic state given by 

Equation (2.1 1 )  has to be solved if 

(2.12) 
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To the order of approximation considered here the dependence of A,, a, and i, on u 
can then be neglected in (2.11) : 

To eliminate the constants A,(O) and a,(O) we define the stretched quantities 

and finally obtain 
aii - a4 
-- (T(u) +id) ii- = 0. a g  at 

(2.13) 

(2.14) 

(2.15) 

Although (2.11) is slightly more general and more complicated than (2.15), the 
solutions are expected to be qualitatively similar. In  the following we shall 
concentrate, therefore, on the discussion of solutions to (2.15). Specifically, we shall 
consider the boundary-value problem 

u = Cr,: 4 = U(t) .  (2.16) 

A formal solution to (2.15) satisfying (2.16) is given by 

4 = U ( 0 ,  t" = k-  U(( )  f(.) d#-$U2(c)(a- a,). (2.17) 

Owing to the dependence of the wave propagation speed on the wave amplitude, 
however, this formal solution will in general cease to predict a unique relationship 
between (a,$ and Zi if u exceeds a critical value us. In order to re-establish 
uniqueness, shock discontinuities have to be inserted into the wave profiles for 
u > gS by cutting off lobes of equal area. Since the description of such discontinuities 
involves the local values of the flow quantities immediately upstream and 
downstream of the front only, the results holding for shocks propagating into an 
initially homogeneous medium can be incorporated unchanged into a study of 
stratification effects. In particular, the expression for the propagation speed of weak 
shocks can be written in the form 

s:. 

(2.18) 

where the brackets denote jumps, i.e. [Q] = Qa-Qb and the subscripts a and b refer 
to conditions after and before the shock. 

Furthermore, the entropy change acroas shock fronts is given by 

(2.19) 

As in the case of homogeneous media, the requirement [q 2 0 following from the 
second law of thermodynamics is too weak to rule out the formation of inadmissible 
shocks which violate the wave-speed ordering requirements that waves may merge 
with the front at arbitrary speeds but must not emanate from the front with a speed 
which differs from the shock speed. Shocks of the latter type having sonic conditions 
either upstream (A ,  > 0) or downstream (A,  < 0) of the front are termed sonic shocks 
and they represent one source for the richness of unusual phenomena associated with 
the propagation of waves exhibiting mixed nonlinearity. For further details the 
reader is referred to the original study by Cramer & Kluwick (1984). 
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3. Qualitative behaviour of solutions to the transport equation 
In  general, (2.15) subject to appropriate boundary conditions has to be solved 

numerically. Before turning to the discussion of results for a wave pulse it is useful, 
however, to investigate briefly some aspects of the qualitative properties of such 
solutions and to illustrate these with applications to single velocity jumps. To this 
end (2.15) is recast in conservation form: 

a.; a j  -+-= 0, 
aa a i  

j = - (;F(a) 222+$3), ( 3 4  
where the flux j and the scaled wavespeed 6, satisfy the relationship 

Furthermore, comparison of (2.18) and (3.2) shows that the speed 6, of a shock 
discontinuity is given by 

(3.4) 

In figure 2 plots of j versus 22 are displayed for-various values of F(0). It is seen, 
for example, that 6;l increases (decreases) if r increases with the propagation 
distance provided 6 is negative (positive). As in the case of a wave propagating into 
an initially homogeneous medium, the dependence of the wave speed on the 
magnitude of the disturbance carried by the wave will, in general, lead to the 
formation of shock discontinuities. By means of standard methods one finds that 
the shock formation distance as satisfies the relationship 

as = mina,, 
where a,(t) is the solution of 

(3.5) 

1 = d ' ( E ) [ ~ ~ f ( s ) d s + ? % ( ~ ) ( a , - a , )  1 . 
In  contrast to the case of an initially homogeneous medium, however, stratification 

effects may also lead to the disintegration of an already exiEting shock front. This can 
be seen most easily by adopting the assumption that r varies linearly with the 
propagation distance 

P =  G+K(a-a,). (3.6) 

For simplicity, let us consider first the limit A,+O. Equation (2.14) then yields 
G - t O  and (3.2) can approximately be replaced by the relationship 

j = - ~ f ( a ) z i 2 + 0 ( . ; 2 ) .  

Accordingly, the location of wavelets = const. in the (a, t")-plane is determined from 

i =  [-ti([) [i=,(v-G-,)+@(a-a,)2]. (2.7) 

a=tT,: i=E (3.8) 

= &($---,+.;-1 w,b) (3.9) 

Here the parameterization 

has been imposed without loss of generality. 
Inspection of the jump relationship (3.4) shows that the bisector rule 

is recovered in the limit A,  + 0. 
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I \ \  
FIGURE 2. Plot o f j  versus 6 for various values of f(0). < f ~~ 

__ 
C-U0 fY-Uo 

i < O  

FIGURE 3. Characteristic curves for (a) &/K > 0, ( b )  &/K < 0. 

It is convenient to  rewrite (3 .7)  in the form 

(3.10) 

from which the properties of characteristic curves in stratified media having 
&/K > 0 or G / K  < 0 can be inferred immediately. In  the first case, figure 3 ( a ) ,  the 
sign of f i n  the unperturbed state does not change with the propagation distance. As a 
consequence the speed Gw of a wavelet carrying constant values of S is either positive 
or negative for all values of a a,, indicating that the wave pattern associated with 
a boundary-value problem will be qualitatively similar to tha$ obtained if f is 
constant. However, if c / K  < 0, figure 3(b ) ,  the local values of r and 6;' vanish at  
a = r7* > a, thus leading to new phenomena. Specifically, evaluation of (3.10) yields 
the result that all characteristic curves [ = const. pass through the point 

tl-5 = 0, r 7  = 20-*-0-,. (3.11) 

As an application of (3 .9) ,  (3.10), (3.11) let us calculate the evolution of a single 
velocity step 

u = S 0  t">o { S=O k o .  a = a,: (3.12) 

As expected, the resulting wave pattern in, the (a, 4-plane qualitatively resembles 
that of the r-constant case provided &/K > 0:  the imposed velocity jump 
immediately disintegrates into a wave fan 

t"= -S[~(a-ao)+g(a-a,)2] ,  0 < 141 < ldol (3.13) 

if 8 0 and So 5 0 (figure 4 a ) ,  while a shock forms if c 2 0 and So 5 0 (figure 4b) .  
A completely different behaviour is observed if c / K  < 0. Results for c 3 0 and 

6,s 0 are depicted in figure 4 (c ) .  In agreement with the wave pattern shown in figure 
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FIGURE 4. (a) Waye fan evolution for >< 0, 
4,s 0 :  T,/K > 0 (&, = 1.0, K = 0.5). (c) Waye evolution for 4 2 0,  Co 5 0 (wave fan focuses at 
5 = ZCT* - T J  and (d )  wave evolution for & 3 0, Co 2 0 (sonic shock disintegrates at CT = CT*) : 

2 0, 4, 5 0 and (b)-shock wave evolution for 

T , / K  < 0 (G = 1.0, K = -0.5). 

4 (a) the imposed velocity jump leads to the occurrence of a wave fan initially. Once 
f has changed sign, however, the characteristic curves forming this fan start to 
converge and they eventually focus at the point t" = 0, u = a, = 2a* -ao. 
Furthermore, it is seen that the shape of the velocity profile imposed at u = a. is 
recovered at  u = us. Owing to the changed sign of r the associated jump [Gl= Go 
produces a stable shock front propagating into the region u > as . Finally, if & >< 0 
and 3,s 0 a shock discontinuity is generated at a = a" (figure 4 4 ,  again in 
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FIGURE 5. Characteristic curves of (2.15), (3.12) for 
6 for various values of u. Dotted line denotes the shock jump. (Results for 

< 0,  K > 0,  A, > 0 2, < 0. (b) Plot ofjversus 
= - 1.0, K = 0.5.) 

agreement with the results holding for t / K  > 0 (figure 4b). Since Ifi decreases with 
increasing propagation distance, the motion of the shock front whose position is 
determined by (3.9) slows down despite the fact that the shock strength remains 
unchanged and sonic conditions are reached a t  cr = cr*. For cr > cr* velocity jumps 
characterized by [ G ] / t  > 0 no longer represent admissible shock discontinuities and, 
consequently, the sonic shock front at u = cr* disintegrates into a wave fan, given by 

(3.14) 

The fact that shocks may terminate at a finite distance from their origin was 
pointed out first by Kluwick & Czemetschka (1990) who studied the evolution of 
spherical and cylindrical waves having mixed nonlinearity which propagate into a 
homogeneous medium. It is a characteristic feature of this phenomenon that the 
shock strength decreases continuously to zero. In contrast, the present analysis has 
shown that stratification effects may cause a shock of finite strength to disappear 
suddenly at a point where the local value of f vanishes if A, = 0. 

It is a well-known result of classical gas dynamics that the strength of a shock can 
vanish only in the limit of infinite time and infinite distance. That this is not 
necessarily true if one considers waves having mixed nonlinearity rests 0% the 
existence of sonic shock conditions. If A, = 0 sonic shock conditions require < = 0 
immediately before the front and, consequently, shocks can terminate at the T = 0 
locus only. If A,  -+ 0, however, sonic shocks can exist over a whole range of upstream 
conditions, which in turn leads to a modification of the shock termination 
phenomenon as sketched in figure 5(a, b), adopting again boundary conditions (2.12). 
Specifically it has been assumed that 8 < 0, K > 0, A,  > 0 and 4, < 0. Figure 5 ( a )  
then displays the resulting wave pattern while figure 5 ( b )  indicates the properties of 
the shock front at  various distances from the boundary cr = CT, in the (1*,4)-plane. 

A t  u = cr, the imposed velocity step leads to the formation of a @able expansion 
shock [GI = 4, < 0. As the shock front propagates to the left Ill decreases and 
vanishes at cr = crA. In  contrast to the case A,  = O_, however, the strength of the shock 
remains unchanged as it passes through the r= 0 locus u = crB and eventually 
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reaches sonic conditions at  a = a,. Owing to the requirement that the shock must 
satisfy sonic upstream conditions as it propagates further, a precursor region forms 
for u > ac. Inside this precursor region the shock strength decays and finally 
vanishes at  a = aD. Here the value of 4 = 4, immediately downstream of the front 
must agree with the value of 4 at the inflexion point of the corresponding 5 versus d 
plot. This condition determines the local value of f at the shock termination point 

(3.15) 

In the limit A,+O (4,+0) the interval [a,, aD] shrinks to a single point a = a* and 
the flow pattern shown in figure 4 ( d )  is recovered. 

In order to conclude this brief discussion of the evolution of single velocity jumps 
we consider next the boundary-value problem 

4=0,  t > O  
a = a,: 

{4=4,, t G 0 .  
(3.16) 

It is easily seen that the solution to this problem for A,  = 0 is obtained from the 
solution subject to the boundary conditions (3.12) if $is replaced by -$. As a typical 
example of the case A, + 0,  figure 6 summarizes the flow properties assuming 
8 < 0, K > 0, A ,  > 0 and 4, > 0. As in figure 5 a stable expansion shock [d] = -2, is 
generated a t  a = a,. With increasing propagation distance the difference between 
the shock speed and the speed of the wavelets merging from behind the front 
decreases and sonic downstream conditions are reached at a = aA where the local 
value of f is still negative. While the shock strength has remained constant up to 
a = aA the shock weakens as a increases further and it vanishes at 

A 

a = ac: T(ac) = 0.  

It has been pointed out already that solutions to the transport equation have in 
general to be calculated numerically. If the boundary conditions are sufficiently 
simple as in the cases (3.12) and (3.16), however, analytical results including 
expressions for the location of shock fronts can b? obtained. To this end it is 
convenient to introduce the scaled stream function I) 

(3.17) 

Insertion into the jump relationships immediately leads to the result that [$] dpes 
not vary along a shock front, and without loss of generality we require that @ is 
continuous across such a front. The position of a shock in the (a,t)-plane is then 

(3.18) 
determined by the relationship 

To evaluate (3.18) we first calculate the derivative of & with respect to u along a 
characteristic curve [ = constant : 

[I)(a,Ol = 0. 

1 a& 
v, at 

= -(a,l)+--(a,l) = -$(a)42-&3. (3.19) 

Integration, taking into account the parametrization (3.8) and introducing the 

(3.20) 
notation of an F-function : 

yields $([,a) = F([)-p’2([) f(8) d~-@”~([) (a-a,). (3.21) 

4 = F’([), ( )’ = d/d( 

VrJ 
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FIGURE 6. (a) Characteristic curves of (2.15), (3.16) for < 0, K > 0, A,  > 0 and 4, > 0. ( b )  Plot 
of j versus 4 for various values of cr. Dotted line denotes the shock jump. (Results of & = - 1.0, 
K = 0.5.) 

In  principle, 6 can be eliminated from this relationship by means of (2.17) 

t"= (-F'([) f ( s )  ds-P"(g) (c-c,). (3.22) 

In  general, however, it  is more convenient to represent the shock curve in parametric 

(3.23) 
form 

rather than to apply (3.19). 
Equations (3.21) and (3.22) are based on the assumption that both characteristic 

curves that merge in a point of the shock front originate at the boundary a = do. 

They therefore fail if wavelets emanate from the shock front itself, e.g. if sonic 
conditions are reached before or behind the jump discontinuity. As in the case of 
constant f investigated by Kluwick & Koller (1988) it  is possible to derive an 
ordinary differential equation which governs the propagation of sonic shock fronts. 

Equations (3.21), (3.22), and (3.23) simplify considerably if Zi = 0 either before or 
after the shock and if the shock strength is constant, [d] = 6,. As a consequence 
F(6)  = do 6 and the location of the shock in the (a, t")-plane is given by 

lo 
$(6, 41 = 0, [t"C6, 4 3  = 0 

t" = - +&,lo f ( s )  ds -&I:( c - a,). (3.24) 

Adopting the assumption (3.6) that f varies linearly with the propagation distance 
one finds 

t" = - + & o { ( f +  3,) (a - a,) + @( d - a,)}. (3.25) 

4. Numerical solutions 

problem 
The quantitative results of $ 3  are illustrated by application to the boundary-value 

d = O  t"> 1 

.;= 0, t"<o. 
(4.1) 
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FIGURE 7. Wave evolution for tio = -1.0, = - 1.0, K = 0.5. 

0.7 

0 

ti 

i 
FIGURE 8. Wave evolution for 4, = 0.7, = -1.0, K = 0.5. 

The solution to (2.15) subject to (4.1) is constructed for f given by (3.6) with 
< 0, K > 0. 
When do < 0 the wave behaviour is shown in figure 7. The initial evolution involves 

a stable expansion shock (see figure 5 )  and a compression fan. The fan originating at 
t̂  = 1 reaches the expansion shock at  cr = gA, resulting in a decay of the shock 
strength for cr > uA. When g = uB the expansion shock satisfies sonic conditions and 
a precursor region forms. The velocity of the shock slows down and the strength of 
the shock decays and vanishes at g = crc. I n  the compression fan the characteristic 
curves begin to converge as f changes sign and becomes positive. This leads to the 
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FIGURE 9. Wave evolution for Go = 1.2, = - 1.0, K = 0.5. 

formation of a stable compression shock a t  u = uD = 2u, -a, which propagates with 
increasing strength until interaction with characteristics from the precursor region 
occurs a t  u = uE. The final shock-fan interaction causes the shock to slow down and 
decay in strength, ultimately resulting in a sawtooth wave structure. 

When 0 < 4, < 1 the behaviour of the wave is similar to that of 4, < 0 and is 
illustrated in figure 8. A stable expansion shock (see figure 6) and a compressive wave 
fan evolve from u = u,. The expansion fan arises from the disintegration of the initial 
velocity jump at t” = 0. As I f l  decreases, the shock slows down and becomes sonic a t  
u = uA with a precursor region forming for u 2 uA. The shock strength which was 
constant up to u = ad weakens and eventyally vanishes a t  u = uc. As f increases 
and eventually changes sign at u = ao-ZJK, the characteristics for d = 4, slow 
down and change direction in the (if, a)-plane. This leads to their intersection with 
characteristics in the wave fan for u > uB, resulting in a compression shock. When 
all the Characteristics for 4 = Q, are absorbed into the trailing shock, the strength 
decays as characteristics from the precursor region enter the shock for u 2 uD. Again 
the long-time behaviour is described by a sawtooth profile. 

When 4, > 1 the velocity discontinuity at if = 0 cannot propagate as a single fan as 
in the previous example. Requiring a smooth velocity transition from 4 = 0 to 
ti = ti, involves a shock-fan combination, with a shock at  u = u, of sonic strength. For 
1.0 < 4, < 1.5 the evolving signal is shown in figure 9 and is similar, with the 
exception of the initial development a t  if = 0, to that shown in figure 8. 

When Q = 1.5 the speed of the front shock equals the wave speed just before the 
shock. A consequence of this is that for 4, > 1.5 the initial discontinuity at u = 1 
cannot propagate as an isolated shock. There is immediate disintegration into a sonic 
shock-fan combination as seen in figure 10. The sonic shock then propagates as in 
previous examples. 

The results illustrated in figures 5-10 involved combining the analysis results of $3 
with, where necessary, numerical integration of the characteristic equations for 



184 A .  Kluwick and E .  A .  Cox 

U -  

6 

5 

4 

g o  3 

2 

1 

0 
- 1  ..5-1.0-0.5 0 0.5 1.0 I 

i 
5 

t 
FIGURE 10. Wave evolution for tio = 2.0, 4 = - 1.0, K = 0.5. 

- 

(2.15). The shock paths were computed from the integration of (2.18). Integration 
was carried out using the numerical subroutine library IMSL and the ordinary 
differential equation solvers found therein. 

5. Concluding remarks 
The evolution equation for weakly nonlinear waves propagating into a fluid having 

mixed nonlinearity when the properties vary in the propagation direction has been 
derived. A discussion of its properties based on the method of characteristics 
indicates the occurrence of interesting new phenomena. Specifically it is found that 
shocks may terminate at a finite distance from their origin with either zero - or even 
more surprising - with finite strength. Moreover expansion/compression fans are 
seen to focys again to form shocks if they enter regions where the fundamental 
derivative r is negative/positive. These conclusions are confirmed by analytical 
solutions describing single steps as well as numerical solutions for square pulses 
which have been obtained for the case that f varies linearly with propagation 
distance. 

Generalization of the present work currently in progress include studies dealing 
with viscous effects as well as effects which occur if the fluid is stratified parallel 
rather than normal to the propagation direction. In the latter case wave fronts will 
turn and it will be interesting to determine whether it is possible to keep the 
associated rays confined to a region where f is small. If so it should be possible to 
construct acoustic wave guides having much smaller losses than in the classical case. 

Another type of wave front turning, caused by the variation of the wave amplitude 
rather than the variation of the unperturbed flow quantities, occurs if one considers 
very narrow acoustic beams. The appropriate form of the model equation which 
governs the evolution of weakly nonlinear disturbances inside such beams was 
derived first by Zabolotskaya & Khokhlov (1969, 1970) (adopting the assumption 
that the fluid is a perfect gas). Starting from a new family of symmetries to this so- 
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called Zabolotskaya-Khokhlov equation, Cates & Crighton (1990) were able to 
deduce a set of exact similarity solutions which sheds some light on nonlinear 
diffraction and caustic formation. Interesting new effects are expected to occur if the 
perfect gas is replaced by a dense gas having mixed nonlinearity. 
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